research

On the role of Riesz potentials in Poisson's equation and Sobolev embeddings

Abstract

In this paper, we study the mapping properties of the classical Riesz potentials acting on LpL^p-spaces. In the supercritical exponent, we obtain new "almost" Lipschitz continuity estimates for these and related potentials (including, for instance, the logarithmic potential). Applications of these continuity estimates include the deduction of new regularity estimates for distributional solutions to Poisson's equation, as well as a proof of the supercritical Sobolev embedding theorem first shown by Brezis and Wainger in 1980.Comment: 21 page

    Similar works

    Full text

    thumbnail-image