In this work we studied a two dimensional ferromagnetic system using Monte
Carlo simulations. Our model includes exchange and dipolar interactions, a
cubic anisotropy term, and uniaxial out-of-plane and in-plane ones. According
to the set of parameters chosen, the model including uniaxial out-of-plane
anisotropy has a ground-state which consists of a canted state with stripes of
opposite out-of-plane magnetization. When the cubic anisotropy is introduced
zigzag patterns appear in the stripes at fields close to the remanence. An
analysis of the anisotropy terms of the model shows that this configuration is
related to specific values of the ratio between the cubic and the effective
uniaxial anisotropy. The mechanism behind this effect is related to particular
features of the anisotropy's energy landscape, since a global minima transition
as a function of the applied field is required in the anisotropy terms. This
new mechanism for zigzags formation could be present in monocrystal
ferromagnetic thin films in a given range of thicknesses.Comment: 910 pages, 10 figure