We introduce a novel decidable fragment of first-order logic. The fragment is
one-dimensional in the sense that quantification is limited to applications of
blocks of existential (universal) quantifiers such that at most one variable
remains free in the quantified formula. The fragment is closed under Boolean
operations, but additional restrictions (called uniformity conditions) apply to
combinations of atomic formulae with two or more variables. We argue that the
notions of one-dimensionality and uniformity together offer a novel perspective
on the robust decidability of modal logics. We also establish that minor
modifications to the restrictions of the syntax of the one-dimensional fragment
lead to undecidable formalisms. Namely, the two-dimensional and non-uniform
one-dimensional fragments are shown undecidable. Finally, we prove that with
regard to expressivity, the one-dimensional fragment is incomparable with both
the guarded negation fragment and two-variable logic with counting. Our proof
of the decidability of the one-dimensional fragment is based on a technique
involving a direct reduction to the monadic class of first-order logic. The
novel technique is itself of an independent mathematical interest