research

Many body localization and thermalization in quantum statistical mechanics

Abstract

We review some recent developments in the statistical mechanics of isolated quantum systems. We provide a brief introduction to quantum thermalization, paying particular attention to the `Eigenstate Thermalization Hypothesis' (ETH), and the resulting `single-eigenstate statistical mechanics'. We then focus on a class of systems which fail to quantum thermalize and whose eigenstates violate the ETH: These are the many-body Anderson localized systems; their long-time properties are not captured by the conventional ensembles of quantum statistical mechanics. These systems can locally remember forever information about their local initial conditions, and are thus of interest for possibilities of storing quantum information. We discuss key features of many-body localization (MBL), and review a phenomenology of the MBL phase. Single-eigenstate statistical mechanics within the MBL phase reveals dynamically-stable ordered phases, and phase transitions among them, that are invisible to equilibrium statistical mechanics and can occur at high energy and low spatial dimensionality where equilibrium ordering is forbidden.Comment: Updated to reflect recent development

    Similar works