HIV-1 protease represents an appealing system for directed enzyme re-design,
since it has various different endogenous targets, a relatively simple
structure and it is well studied. Recently Chaudhury and Gray (Structure (2009)
17: 1636 -- 1648) published a computational algorithm to discern the
specificity determining residues of HIV-1 protease. In this paper we present
two computational tools aimed at re-designing HIV-1 protease, derived from the
algorithm of Chaudhuri and Gray. First, we present an energy-only based
methodology to discriminate cleavable and non cleavable peptides for HIV-1
proteases, both wild type and mutant. Secondly, we show an algorithm we
developed to predict mutant HIV-1 proteases capable of cleaving a new target
substrate peptide, different from the natural targets of HIV-1 protease. The
obtained in silico mutant enzymes were analyzed in terms of cleavability and
specificity towards the target peptide using the energy-only methodology. We
found two mutant proteases as best candidates for specificity and cleavability
towards the target sequence