Split supersymmetry (SUSY) -- in which SUSY is relevant to our universe but
largely inaccessible at current accelerators -- has become increasingly
plausible given the absence of new physics at the LHC, the success of gauge
coupling unification, and the observed Higgs mass. Indirect probes of split
SUSY such as electric dipole moments (EDMs) and flavor violation offer hope for
further evidence but are ultimately limited in their reach. Inflation offers an
alternate window into SUSY through the direct production of superpartners
during inflation. These particles are capable of leaving imprints in future
cosmological probes of primordial non-gaussianity. Given the recent
observations of BICEP2, the scale of inflation is likely high enough to probe
the full range of split SUSY scenarios and therefore offers a unique advantage
over low energy probes. The key observable for future experiments is
equilateral non-gaussianity, which will be probed by both cosmic microwave
background (CMB) and large scale structure (LSS) surveys. In the event of a
detection, we forecast our ability to find evidence for superpartners through
the scaling behavior in the squeezed limit of the bispectrum.Comment: 19 pages, 6 figure