research

Sigma Partitioning: Complexity and Random Graphs

Abstract

A sigma partitioning\textit{sigma partitioning} of a graph GG is a partition of the vertices into sets P1,…,PkP_1, \ldots, P_k such that for every two adjacent vertices uu and vv there is an index ii such that uu and vv have different numbers of neighbors in PiP_i. The  sigma number\textit{ sigma number} of a graph GG, denoted by σ(G)\sigma(G), is the minimum number kk such that G G has a sigma partitioning P1,…,PkP_1, \ldots, P_k. Also, a  lucky labeling\textit{ lucky labeling} of a graph GG is a function ℓ:V(G)→N \ell :V(G) \rightarrow \mathbb{N}, such that for every two adjacent vertices v v and u u of G G , ∑w∼vℓ(w)≠∑w∼uℓ(w) \sum_{w \sim v}\ell(w)\neq \sum_{w \sim u}\ell(w) (x∼y x \sim y means that x x and yy are adjacent). The  lucky number\textit{ lucky number} of G G , denoted by η(G)\eta(G), is the minimum number kk such that G G has a lucky labeling ℓ:V(G)→Nk \ell :V(G) \rightarrow \mathbb{N}_k. It was conjectured in [Inform. Process. Lett., 112(4):109--112, 2012] that it is NP \mathbf{NP} -complete to decide whether η(G)=2 \eta(G)=2 for a given 3-regular graph GG. In this work, we prove this conjecture. Among other results, we give an upper bound of five for the sigma number of a uniformly random graph

    Similar works

    Full text

    thumbnail-image

    Available Versions