research

Localization of spin waves in disordered quantum rotors

Abstract

We study the dynamics of excitations in a system of O(N)O(N) quantum rotors in the presence of random fields and random anisotropies. Below the lower critical dimension dlc=4d_{\mathrm{lc}}=4 the system exhibits a quasi-long-range order with a power-law decay of correlations. At zero temperature the spin waves are localized at the length scale LlocL_{\mathrm{loc}} beyond which the quantum tunneling is exponentially suppressed ce(L/Lloc)2(θ+1) c \sim e^{-(L/L_{\mathrm{loc}})^{2(\theta+1)}}. At finite temperature TT the spin waves propagate by thermal activation over energy barriers that scales as LθL^{\theta}. Above dlcd_{\mathrm{lc}} the system undergoes an order-disorder phase transition with activated dynamics such that the relaxation time grows with the correlation length ξ\xi as τeCξθ/T\tau \sim e^{C \xi^\theta/T} at finite temperature and as τeCξ2(θ+1)/2\tau \sim e^{C' \xi^{2(\theta+1)}/\hbar^2} in the vicinity of the quantum critical point.Comment: 8 pages, 2 figures, revtex

    Similar works