research

Cauchy's formulas for random walks in bounded domains

Abstract

Cauchy's formula was originally established for random straight paths crossing a body BRnB \subset \mathbb{R}^{n} and basically relates the average chord length through BB to the ratio between the volume and the surface of the body itself. The original statement was later extended in the context of transport theory so as to cover the stochastic paths of Pearson random walks with exponentially distributed flight lengths traversing a bounded domain. Some heuristic arguments suggest that Cauchy's formula may also hold true for Pearson random walks with arbitrarily distributed flight lengths. For such a broad class of stochastic processes, we rigorously derive a generalized Cauchy's formula for the average length travelled by the walkers in the body, and show that this quantity depends indeed only on the ratio between the volume and the surface, provided that some constraints are imposed on the entrance step of the walker in BB. Similar results are obtained also for the average number of collisions performed by the walker in BB, and an extension to absorbing media is discussed.Comment: 12 pages, 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 12/11/2016