research

Application of the effective Fisher matrix to the frequency domain inspiral waveforms

Abstract

The Fisher matrix (FM) has been generally used to predict the accuracy of the gravitational wave parameter estimation. Although a limitation of the FM has been well known, it is still mainly used due to its very low computational cost compared to the Monte Carlo simulations. Recently, Rodriguez et al. [Phys. Rev. D 88, 084013 (2013)] performed Markov chain Monte Carlo (MCMC) simulations for nonspinning binary systems with total masses M20MM \leq 20 M_{\odot}, they found systematic differences between the predictions from FM and MCMC for M>10MM>10 M_{\odot}. On the other hand, an effective Fisher matrix (eFM) was recently introduced by Cho et al. [Phys. Rev. D 87, 24004 (2013)]. The eFM is a semi-analytic approach to the standard FM, in which the partial derivative is taken by a quadratic fitting function to the local overlap surface. In this work, we apply the eFM method to several nonspinning binary systems and find that the error bounds in eFM are qualitatively in good agreement with the MCMC results of Rodriguez et al. in all mass regions. In particular, we provide concrete examples showing an importance of taking into account the template-dependent frequency cutoff of the inspiral waveforms.Comment: 13 pages, 5figures; final version accepted for publication in CQG; changed significantly from v

    Similar works

    Full text

    thumbnail-image

    Available Versions