research

Renyi entropy and improved equilibration rates to self-similarity for nonlinear diffusion equations

Abstract

We investigate the large-time asymptotics of nonlinear diffusion equations ut=Δupu_t = \Delta u^p in dimension n1n \ge 1, in the exponent interval p>n/(n+2)p > n/(n+2), when the initial datum u0u_0 is of bounded second moment. Precise rates of convergence to the Barenblatt profile in terms of the relative R\'enyi entropy are demonstrated for finite-mass solutions defined in the whole space when they are re-normalized at each time t>0t> 0 with respect to their own second moment. The analysis shows that the relative R\'enyi entropy exhibits a better decay, for intermediate times, with respect to the standard Ralston-Newton entropy. The result follows by a suitable use of the so-called concavity of R\'enyi entropy power

    Similar works