research

Gluing Nekrasov partition functions

Abstract

In this paper we summarise the localisation calculation of 5D super Yang-Mills on simply connected toric Sasaki-Einstein (SE) manifolds. We show how various aspects of the computation, including the equivariant index, the asymptotic behaviour and the factorisation property are governed by the combinatorial data of the toric geometry. We prove that the full perturbative partition function on a simply connected SE manifold corresponding to an n-gon toric diagram factorises to n copies of perturbative Nekrasov partition function. This leads us to conjecture the full partition function as gluing n copies of full Nekrasov partition function. This work is a generalisation of some earlier computation carried out on Yp,qY^{p,q} manifolds, whose moment map cone has a quadrangle and our result is valid for manifolds whose moment map cones have pentagon base, hexagon base, etc. The algorithm we used for dealing with general cones may also be of independent interest.Comment: 37 pages, references added, typos correcte

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2025