The popular bar prank known in colloquial English as beer tapping consists in
hitting the top of a beer bottle with a solid object, usually another bottle,
to trigger the foaming over of the former within a few seconds. Despite the
trick being known for long time, to the best of our knowledge, the phenomenon
still lacks scientific explanation. Although it seems natural to think that
shock-induced cavitation enhances the diffusion of CO2 from the
supersaturated bulk liquid into the bubbles by breaking them up, the subtle
mechanism by which this happens remains unknown. Here we show that the overall
foaming-over process can be divided into three stages where different physical
phenomena take place in different time-scales, namely: bubble-collapse (or
cavitation) stage, diffusion-driven stage and buoyancy-driven stage. In the
bubble-collapse stage, the impact generates a train of expansion-compression
waves in the liquid that leads to the fragmentation of pre-existing gas
cavities. Upon bubble fragmentation, the sudden increase of the
interface-area-to-volume ratio enhances mass transfer significantly, which
makes the bubble volume grow by a large factor until CO2 is locally
depleted. At that point buoyancy takes over, making the bubble clouds rise and
eventually form buoyant vortex rings whose volume grows fast due to the
feedback between the buoyancy-induced rising speed and the advection-enhanced
CO2 transport from the bulk liquid to the bubble. The physics behind this
explosive process might also be connected to some geological phenomena.Comment: 7 pages, 4 figures, 4 movies Accepted in Physical Review Letter