We visualize the formation of fingered flow in dry model sandy soils under
different raining conditions using a quasi-2d experimental set-up, and
systematically determine the impact of soil grain diameter and surface wetting
property on water channelization phenomenon. The model sandy soils we use are
random closely-packed glass beads with varied diameters and surface treatments.
For hydrophilic sandy soils, our experiments show that rain water infiltrates
into a shallow top layer of soil and creates a horizontal water wetting front
that grows downward homogeneously until instabilities occur to form fingered
flows. For hydrophobic sandy soils, in contrast, we observe that rain water
ponds on the top of soil surface until the hydraulic pressure is strong enough
to overcome the capillary repellency of soil and create narrow water channels
that penetrate the soil packing. Varying the raindrop impinging speed has
little influence on water channel formation. However, varying the rain rate
causes significant changes in water infiltration depth, water channel width,
and water channel separation. At a fixed raining condition, we combine the
effects of grain diameter and surface hydrophobicity into a single parameter
and determine its influence on water infiltration depth, water channel width,
and water channel separation. We also demonstrate the efficiency of several
soil water improvement methods that relate to rain water channelization
phenomenon, including pre-wetting sandy soils at different level before
rainfall, modifying soil surface flatness, and applying superabsorbent hydrogel
particles as soil modifiers