The hypergraph jump problem and the study of Lagrangians of uniform
hypergraphs are two classical areas of study in the extremal graph theory. In
this paper, we refine the concept of jumps to strong jumps and consider the
analogous problems over non-uniform hypergraphs. Strong jumps have rich
topological and algebraic structures. The non-strong-jump values are precisely
the densities of the hereditary properties, which include the Tur\'an densities
of families of hypergraphs as special cases. Our method uses a generalized
Lagrangian for non-uniform hypergraphs. We also classify all strong jump values
for {1,2}-hypergraphs.Comment: 19 page