research

Topological and measure properties of some self-similar sets

Abstract

Given a finite subset ΣR\Sigma\subset\mathbb{R} and a positive real number q<1q<1 we study topological and measure-theoretic properties of the self-similar set K(Σ;q)={n=0anqn:(an)nωΣω}K(\Sigma;q)=\big\{\sum_{n=0}^\infty a_nq^n:(a_n)_{n\in\omega}\in\Sigma^\omega\big\}, which is the unique compact solution of the equation K=Σ+qKK=\Sigma+qK. The obtained results are applied to studying partial sumsets E(x)={n=0xnεn:(εn)nω{0,1}ω}E(x)=\big\{\sum_{n=0}^\infty x_n\varepsilon_n:(\varepsilon_n)_{n\in\omega}\in\{0,1\}^\omega\big\} of some (multigeometric) sequences x=(xn)nωx=(x_n)_{n\in\omega}.Comment: 10 page

    Similar works