research

On the Complexity of Computing Two Nonlinearity Measures

Abstract

We study the computational complexity of two Boolean nonlinearity measures: the nonlinearity and the multiplicative complexity. We show that if one-way functions exist, no algorithm can compute the multiplicative complexity in time 2O(n)2^{O(n)} given the truth table of length 2n2^n, in fact under the same assumption it is impossible to approximate the multiplicative complexity within a factor of (2ϵ)n/2(2-\epsilon)^{n/2}. When given a circuit, the problem of determining the multiplicative complexity is in the second level of the polynomial hierarchy. For nonlinearity, we show that it is #P hard to compute given a function represented by a circuit

    Similar works