research

A Local Description of Dark Energy in Terms of Classical Two-Component Massive Spin-One Uncharged Fields on Spacetimes with Torsionful Affinities

Abstract

It is assumed that the two-component spinor formalisms for curved spacetimes that are endowed with torsionful affine connexions can supply a local description of dark energy in terms of classical massive spin-one uncharged fields. The relevant wave functions are related to torsional affine potentials which bear invariance under the action of the generalized Weyl gauge group. Such potentials are thus taken to carry an observable character and emerge from contracted spin affinities whose patterns are chosen in a suitable way. New covariant calculational techniques are then developed towards deriving explicitly the wave equations that supposedly control the propagation in spacetime of the dark energy background. What immediately comes out of this derivation is a presumably natural display of interactions between the fields and both spin torsion and curvatures. The physical properties that may arise directly from the solutions to the wave equations are not brought out.Comment: About 10 pages, 47 reference

    Similar works

    Full text

    thumbnail-image