research

Matrix-F5 algorithms and tropical Gr\"obner bases computation

Abstract

Let KK be a field equipped with a valuation. Tropical varieties over KK can be defined with a theory of Gr\"obner bases taking into account the valuation of KK. Because of the use of the valuation, this theory is promising for stable computations over polynomial rings over a pp-adic fields.We design a strategy to compute such tropical Gr\"obner bases by adapting the Matrix-F5 algorithm. Two variants of the Matrix-F5 algorithm, depending on how the Macaulay matrices are built, are available to tropical computation with respective modifications. The former is more numerically stable while the latter is faster.Our study is performed both over any exact field with valuation and some inexact fields like Q_p\mathbb{Q}\_p or F_qt.\mathbb{F}\_q \llbracket t \rrbracket. In the latter case, we track the loss in precision, and show that the numerical stability can compare very favorably to the case of classical Gr\"obner bases when the valuation is non-trivial. Numerical examples are provided

    Similar works

    Full text

    thumbnail-image

    Available Versions