We investigate the properties of orphan penumbrae, which are photospheric
filamentary structures observed in active regions near polarity inversion lines
that resemble the penumbra of regular sunspots but are not connected to any
umbra. We use Hinode data from the Solar Optical Telescope to determine the
properties of orphan penumbrae. Spectropolarimetric data are employed to obtain
the vector magnetic field and line-of-sight velocities in the photosphere.
Magnetograms are used to study the overall evolution of these structures, and
G-band and Ca II H filtergrams are to investigate their brightness and apparent
horizontal motions. Orphan penumbrae form between regions of opposite polarity
in places with horizontal magnetic fields. Their magnetic configuration is that
of Ω-shaped flux ropes. In the two cases studied here, the
opposite-polarity regions approach each other with time and the whole structure
submerges as the penumbral filaments disappear. Orphan penumbrae are very
similar to regular penumbrae, including the existence of strong gas flows.
Therefore, they could have a similar origin. The main difference between them
is the absence of a "background" magnetic field in orphan penumbrae. This could
explain most of the observed differences. The fast flows we detect in orphan
penumbrae may be caused by the siphon flow mechanism. Based on the similarities
between orphan and regular penumbrae, we propose that the Evershed flow is also
a manifestation of siphon flows.Comment: 15 pages, 15 figure