research

Density Functional Theory for Hard Particles in N Dimensions

Abstract

Recently it has been shown that the heuristic Rosenfeld functional derives from the virial expansion for particles which overlap in one center. Here, we generalize this approach to any number of intersections. Starting from the virial expansion in Ree-Hoover diagrams, it is shown in the first part that each intersection pattern defines exactly one infinite class of diagrams. Determining their automorphism groups, we sum over all its elements and derive a generic functional. The second part proves that this functional factorizes into a convolute of integral kernels for each intersection center. We derive this kernel for N dimensional particles in the N dimensional, flat Euclidean space. The third part focuses on three dimensions and determines the functionals for up to four intersection centers, comparing the leading order to Rosenfeld's result. We close by proving a generalized form of the Blaschke, Santalo, Chern equation of integral geometry.Comment: 2 figure

    Similar works