Microbes require several complex organic molecules for growth. A species may
obtain a required factor by taking up molecules released by other species or by
synthesizing the molecule. The patterns of uptake and synthesis set a flow of
resources through the multiple species that create a microbial community. This
article analyzes a simple mathematical model of the tradeoff between uptake and
synthesis. Key factors include the influx rate from external sources relative
to the outflux rate, the rate of internal decay within cells, and the cost of
synthesis. Aspects of demography also matter, such as cellular birth and death
rates, the expected time course of a local resource flow, and the associated
lifespan of the local population. Spatial patterns of genetic variability and
differentiation between populations may also strongly influence the evolution
of metabolic regulatory controls of individual species and thus the structuring
of microbial communities. The widespread use of optimality approaches in recent
work on microbial metabolism has ignored demography and genetic structure