research

Hecke characters and the KK-theory of totally real and CM number fields

Abstract

Let F/KF/K be an abelian extension of number fields with FF either CM or totally real and KK totally real. If FF is CM and the Brumer-Stark conjecture holds for F/KF/K, we construct a family of G(F/K)G(F/K)--equivariant Hecke characters for FF with infinite type equal to a special value of certain G(F/K)G(F/K)--equivariant LL-functions. Using results of Greither-Popescu on the Brumer-Stark conjecture we construct ll-adic imprimitive versions of these characters, for primes l>2l> 2. Further, the special values of these ll-adic Hecke characters are used to construct G(F/K)G(F/K)-equivariant Stickelberger-splitting maps in the ll-primary Quillen localization sequence for FF, extending the results obtained in 1990 by Banaszak for K=QK = \Bbb Q. We also apply the Stickelberger-splitting maps to construct special elements in the ll-primary piece K2n(F)lK_{2n}(F)_l of K2n(F)K_{2n}(F) and analyze the Galois module structure of the group D(n)lD(n)_l of divisible elements in K2n(F)lK_{2n}(F)_l, for all n>0n>0. If nn is odd and coprime to ll and F=KF = K is a fairly general totally real number field, we study the cyclicity of D(n)lD(n)_l in relation to the classical conjecture of Iwasawa on class groups of cyclotomic fields and its potential generalization to a wider class of number fields. Finally, if FF is CM, special values of our ll-adic Hecke characters are used to construct Euler systems in the odd KK-groups with coefficients K2n+1(F,Z/lk)K_{2n+1}(F, \Bbb Z/l^k), for all n>0n>0. These are vast generalizations of Kolyvagin's Euler system of Gauss sums and of the KK-theoretic Euler systems constructed in Banaszak-Gajda when K=QK = \Bbb Q.Comment: 38 page

    Similar works

    Full text

    thumbnail-image

    Available Versions