research

Regularized Block Toeplitz Covariance Matrix Estimation via Kronecker Product Expansions

Abstract

In this work we consider the estimation of spatio-temporal covariance matrices in the low sample non-Gaussian regime. We impose covariance structure in the form of a sum of Kronecker products decomposition (Tsiligkaridis et al. 2013, Greenewald et al. 2013) with diagonal correction (Greenewald et al.), which we refer to as DC-KronPCA, in the estimation of multiframe covariance matrices. This paper extends the approaches of (Tsiligkaridis et al.) in two directions. First, we modify the diagonally corrected method of (Greenewald et al.) to include a block Toeplitz constraint imposing temporal stationarity structure. Second, we improve the conditioning of the estimate in the very low sample regime by using Ledoit-Wolf type shrinkage regularization similar to (Chen, Hero et al. 2010). For improved robustness to heavy tailed distributions, we modify the KronPCA to incorporate robust shrinkage estimation (Chen, Hero et al. 2011). Results of numerical simulations establish benefits in terms of estimation MSE when compared to previous methods. Finally, we apply our methods to a real-world network spatio-temporal anomaly detection problem and achieve superior results.Comment: To appear at IEEE SSP 2014 4 page

    Similar works

    Full text

    thumbnail-image

    Available Versions