Twisted photons are photons carrying a well-defined nonzero value of orbital
angular momentum (OAM). The associated optical wave exhibits a helical shape of
the wavefront (hence the name) and an optical vortex at the beam axis. The OAM
of light is attracting a growing interest for its potential in photonic
applications ranging from particle manipulation, microscopy and
nanotechnologies, to fundamental tests of quantum mechanics, classical data
multiplexing and quantum communication. Hitherto, however, all results obtained
with optical OAM were limited to laboratory scale. Here we report the
experimental demonstration of a link for free-space quantum communication with
OAM operating over a distance of 210 meters. Our method exploits OAM in
combination with optical polarization to encode the information in
rotation-invariant photonic states, so as to guarantee full independence of the
communication from the local reference frames of the transmitting and receiving
units. In particular, we implement quantum key distribution (QKD), a protocol
exploiting the features of quantum mechanics to guarantee unconditional
security in cryptographic communication, demonstrating error-rate performances
that are fully compatible with real-world application requirements. Our results
extend previous achievements of OAM-based quantum communication by over two
orders of magnitudes in the link scale, providing an important step forward in
achieving the vision of a worldwide quantum network