research

Large Cuts with Local Algorithms on Triangle-Free Graphs

Abstract

We study the problem of finding large cuts in dd-regular triangle-free graphs. In prior work, Shearer (1992) gives a randomised algorithm that finds a cut of expected size (1/2+0.177/d)m(1/2 + 0.177/\sqrt{d})m, where mm is the number of edges. We give a simpler algorithm that does much better: it finds a cut of expected size (1/2+0.28125/d)m(1/2 + 0.28125/\sqrt{d})m. As a corollary, this shows that in any dd-regular triangle-free graph there exists a cut of at least this size. Our algorithm can be interpreted as a very efficient randomised distributed algorithm: each node needs to produce only one random bit, and the algorithm runs in one synchronous communication round. This work is also a case study of applying computational techniques in the design of distributed algorithms: our algorithm was designed by a computer program that searched for optimal algorithms for small values of dd.Comment: 1+17 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions