We perform a complete census of molecular ions with an abundance larger than
1e-10 in the protostellar shock L1157-B1 by means of an unbiased
high-sensitivity survey obtained with the IRAM-30m and Herschel/HIFI. By means
of an LVG radiative transfer code the gas physical conditions and fractional
abundances of molecular ions are derived. The latter are compared with
estimates of steady-state abundances in the cloud and their evolution in the
shock calculated with the chemical model Astrochem. We detect emission from
HCO+, H13CO+, N2H+, HCS+, and, for the first time in a shock, from HOCO+, and
SO+. The bulk of the emission peaks at blueshifted velocity, ~ 0.5-3 km/s with
respect to systemic, has a width of ~ 4-8 km/s, and is associated with the
outflow cavities (T_kin ~ 20-70 K, n(H2) ~ 1e5 cm-3). Observed HCO+ and N2H+
abundances are in agreement with steady-state abundances in the cloud and with
their evolution in the compressed and heated gas in the shock for cosmic rays
ionization rate Z = 3e-16 s-1. HOCO+, SO+, and HCS+ observed abundances,
instead, are 1-2 orders of magnitude larger than predicted in the cloud; on the
other hand they are strongly enhanced on timescales shorter than the shock age
(~2000 years) if CO2, S or H2S, and OCS are sputtered off the dust grains in
the shock. The performed analysis indicates that HCO+ and N2H+ are a fossil
record of pre-shock gas in the outflow cavity, while HOCO+, SO+, and HCS+ are
effective shock tracers and can be used to infer the amount of CO2 and
sulphur-bearing species released from dust mantles in the shock. The observed
HCS+ (and CS) abundance indicates that OCS should be one of the main sulphur
carrier on grain mantles. However, the OCS abundance required to fit the
observations is 1-2 orders of magnitude larger than observed. Further studies
are required to fully understand the chemistry of sulphur-bearing species.Comment: 12 pages, 5 figures, accepted by A&