We investigate the formation of self-trapped holes (STH) in three
prototypical perovskites (SrTiO3, BaTiO3, PbTiO3) using a combination of
density functional theory (DFT) calculations with local potentials and hybrid
functionals. First we construct a local correction potential for polaronic
configurations in SrTiO3 that is applied via the DFT+U method and matches the
forces from hybrid calculations. We then use the DFT+U potential to search the
configuration space and locate the lowest energy STH configuration. It is
demonstrated that both the DFT+U potential and the hybrid functional yield a
piece-wise linear dependence of the total energy on the occupation of the STH
level suggesting that self-interaction effects have been properly removed. The
DFT+U model is found to be transferable to BaTiO3 and PbTiO3, and formation
energies from DFT+U and hybrid calculations are in close agreement for all
three materials. STH formation is found to be energetically favorable in SrTiO3
and BaTiO3 but not in PbTiO3, which can be rationalized by considering the
alignment of the valence band edges on an absolute energy scale. In the case of
PbTiO3 the strong coupling between Pb 6s and O 2p states lifts the valence band
minimum (VBM) compared to SrTiO3 and BaTiO3. This reduces the separation
between VBM and STH level and renders the STH configuration metastable with
respect to delocalization (band hole state). We expect that the present
approach can be adapted to study STH formation also oxides with different
crystal structures and chemical composition.Comment: 7 pages, 6 figure