slides

Variable-length compression allowing errors

Abstract

This paper studies the fundamental limits of the minimum average length of lossless and lossy variable-length compression, allowing a nonzero error probability ϵ\epsilon, for lossless compression. We give non-asymptotic bounds on the minimum average length in terms of Erokhin's rate-distortion function and we use those bounds to obtain a Gaussian approximation on the speed of approach to the limit which is quite accurate for all but small blocklengths: (1ϵ)kH(S)kV(S)2πe(Q1(ϵ))22(1 - \epsilon) k H(\mathsf S) - \sqrt{\frac{k V(\mathsf S)}{2 \pi} } e^{- \frac {(Q^{-1}(\epsilon))^2} 2 } where Q1()Q^{-1}(\cdot) is the functional inverse of the standard Gaussian complementary cdf, and V(S)V(\mathsf S) is the source dispersion. A nonzero error probability thus not only reduces the asymptotically achievable rate by a factor of 1ϵ1 - \epsilon, but this asymptotic limit is approached from below, i.e. larger source dispersions and shorter blocklengths are beneficial. Variable-length lossy compression under an excess distortion constraint is shown to exhibit similar properties

    Similar works