We consider refined versions of Markov chains related to juggling introduced
by Warrington. We further generalize the construction to juggling with
arbitrary heights as well as infinitely many balls, which are expressed more
succinctly in terms of Markov chains on integer partitions. In all cases, we
give explicit product formulas for the stationary probabilities. The
normalization factor in one case can be explicitly written as a homogeneous
symmetric polynomial. We also refine and generalize enriched Markov chains on
set partitions. Lastly, we prove that in one case, the stationary distribution
is attained in bounded time.Comment: 28 pages, 5 figures, final versio