During Saccharomyces cerevisiae closed mitosis, parental identity is
sustained by the asymmetric segregation of ageing factors. Such asymmetry has
been hypothesized to occur via diffusion barriers, constraining protein lateral
exchange in cellular membranes. Diffusion barriers have been extensively
studied in the plasma membrane, but their identity and organization within the
nucleus remain unknown. Here, we propose how sphingolipid domains, protein
rings, and morphological changes of the nucleus may coordinate to restrict
protein exchange between nuclear lobes. Our spatial stochastic model is based
on several lines of experimental evidence and predicts that, while a
sphingolipid domain and a protein ring could constitute the barrier during
early anaphase; a sphingolipid domain spanning the bridge between lobes during
late anaphase would be entirely sufficient. Additionally, we explore the
structural organization of plausible diffusion barriers. Our work shows how
nuclear diffusion barriers in closed mitosis may be emergent properties of
simple nanoscale biophysical interactions.Comment: 21 pages, 6 figures and supplementary material (including 8
additional figures and a Table