research

On the spheroidized carbide dissolution and elemental partitioning in a high carbon bearing steel 100Cr6

Abstract

We report on the characterization of high carbon bearing steel 100Cr6 using electron microscopy and atom probe tomography in combination with multi-component diffusion simulations (DICTRA). Scanning electron micrographs show that around 14 vol.% spheroidized carbides are formed during soft annealing and only 3 vol.% remain after dissolution into the austenitic matrix by austenitization at 1123 K (850 {\deg}C) for 300 s. The spheroidized particles are identified as (Fe, Cr)3C by transmission electron microscopy. Atom probe analyses reveal the redistribution and partitioning behaviors of elements, i.e. C, Si, Mn, Cr, Fe in both, the spheroidized carbides and the bainitic matrix in the sample isothermally heat-treated at 773 K (500 {\deg}C) after austenitization. A homogeneous distribution of C and gradual gradient of Cr was detected within the spheroidized carbides. Due to its limited diffusivity in (Fe, Cr)3C, Cr exhibits a maximum concentration at the surface of spheroidized carbides (16 at.%) and decreases gradually from surface towards the core down to a level of about 2 at.%. The atom probe results also indicate that the partially dissolved spheroidized carbides during austenitization may serve as nucleation sites for intermediate temperature cementite within bainite, which results in a relatively softer surface and harder core in spheroidized particles. This microstructure may contribute to the good wear resistance and fatigue propertie

    Similar works