research

The impact of metallicity and dynamics on the evolution of young star clusters

Abstract

The early evolution of a dense young star cluster (YSC) depends on the intricate connection between stellar evolution and dynamical processes. Thus, N-body simulations of YSCs must account for both aspects. We discuss N-body simulations of YSCs with three different metallicities (Z=0.01, 0.1 and 1 Zsun), including metallicity-dependent stellar evolution recipes and metallicity-dependent prescriptions for stellar winds and remnant formation. We show that mass-loss by stellar winds influences the reversal of core collapse. In particular, the post-collapse expansion of the core is faster in metal-rich YSCs than in metal-poor YSCs, because the former lose more mass (through stellar winds) than the latter. As a consequence, the half-mass radius expands more in metal-poor YSCs. We also discuss how these findings depend on the total mass and on the virial radius of the YSC. These results give us a clue to understand the early evolution of YSCs with different metallicity.Comment: to appear in "Massive Young Star Clusters Near and Far: From the Milky Way to Reionization", 2013 Guillermo Haro Conference, Eds. Y. D. Mayya, D. Rosa-Gonzalez & E. Terlevich, INAOE and AMC. 4 pages, 2 figure

    Similar works