We study the problem of detecting planted solutions in a random
satisfiability formula. Adopting the formalism of hypothesis testing in
statistical analysis, we describe the minimax optimal rates of detection. Our
analysis relies on the study of the number of satisfying assignments, for which
we prove new results. We also address algorithmic issues, and give a
computationally efficient test with optimal statistical performance. This
result is compared to an average-case hypothesis on the hardness of refuting
satisfiability of random formulas