CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
圈养东北虎幼崽群体活动的自动跟踪方法研究
Authors
刘 丹
吴 伟
+4 more
姜广顺
崔永璐
邓雯心
马光凯
Publication date
1 January 2022
Publisher
Editorial Department of Chinese Journal of Wildlife
Doi
Cite
Abstract
东北虎(Panthera tigris altaica)是国家一级重点保护野生动物,在人工饲养环境下,对东北虎幼崽及其母虎活动的精准跟踪是研究东北虎幼崽成长过程中行为发育、观测东北虎个体健康状况的重要手段。本研究提出了一种轻量型的GhostNet-DeepSORT算法来实现在监控视频下的东北虎幼崽群体活动的多目标跟踪。该算法的测试结果表明:东北虎幼崽个体目标检测的召回率和平均精度均值分别是94.9%和96.2%,东北虎幼崽多目标跟踪准确度(MOTA)和精确度(MOTP)分别是91.6%和88.2%。通过轻量化操作处理后的GhostNet-DeepSORT算法,在MOTA保持不变时,MOTP提升了1.25%,而且模型占用内存从45.4 MB减小到6.5 MB。因此,相对于DeepSORT算法而言,GhostNet-DeepSORT算法在保证跟踪精度的同时更适用于算力资源不足的小型设备,相比于由宽残差网络构成的重识别网络,采用GhostNet网络进行模型的轻量化替代,实现在视频中东北虎个体重识别。该跟踪算法的实现也为后续圈养东北虎幼崽个体行为识别和个体健康的便捷和快速评估研究提供必要的技术支撑
Similar works
Full text
Available Versions
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:8f554980f...
Last time updated on 03/04/2025