Water is observed throughout the universe, from diffuse interstellar clouds
to protoplanetary disks around young stars, and from comets in our own solar
system and exoplanetary atmospheres to galaxies at high redshifts. This review
summarizes the spectroscopy and excitation of water in interstellar space as
well as the basic chemical processes that form and destroy water under
interstellar conditions. Three major routes to water formation are identified:
low temperature ion-molecule chemistry, high-temperature neutral-neutral
chemistry and gas-ice chemistry. The rate coefficients of several important
processes entering the networks are discussed in detail; several of them have
been determined only in the last decade through laboratory experiments and
theoretical calculations. Astronomical examples of each of the different
chemical routes are presented using data from powerful new telescopes, in
particular the Herschel Space Observatory. Basic chemical physics studies
remain critically important to analyze astronomical data.Comment: Authors' manuscript 138 pages, 34 figures, 4 tables, published in a
Thematic Issue "Astrochemistry" in Chemical Reviews (December 2013), volume
113, 9043-9085 following peer review by the American Chemical Society. The
published paper is available as open access at
http://pubs.acs.org/doi/abs/10.1021/cr400317