A theoretical and experimental description of the threshold, amplitude, and
stability of a self-oscillating nanowire in a field emission configuration is
presented. Two thresholds for the onset of self-oscillation are identified, one
induced by fluctuations of the electromagnetic environment and a second
revealed by these fluctuations by measuring the probability density function of
the current. The ac and dc components of the current and the phase stability
are quantified. An ac to dc ratio above 100% and an Allan deviation of 1.3x10-5
at room temperature can be attained. Finally, it is shown that a simple
nonlinear model cannot describe the equilibrium effective potential in the
self-oscillating regime due to the high amplitude of oscillations