We present the Glasgow Parallel Reduction Machine (GPRM), a novel, flexible
framework for parallel task-composition based many-core programming. We allow
the programmer to structure programs into task code, written as C++ classes,
and communication code, written in a restricted subset of C++ with functional
semantics and parallel evaluation. In this paper we discuss the GPRM, the
virtual machine framework that enables the parallel task composition approach.
We focus the discussion on GPIR, the functional language used as the
intermediate representation of the bytecode running on the GPRM. Using examples
in this language we show the flexibility and power of our task composition
framework. We demonstrate the potential using an implementation of a merge sort
algorithm on a 64-core Tilera processor, as well as on a conventional Intel
quad-core processor and an AMD 48-core processor system. We also compare our
framework with OpenMP tasks in a parallel pointer chasing algorithm running on
the Tilera processor. Our results show that the GPRM programs outperform the
corresponding OpenMP codes on all test platforms, and can greatly facilitate
writing of parallel programs, in particular non-data parallel algorithms such
as reductions.Comment: In Proceedings PLACES 2013, arXiv:1312.221