research

Evolution of female choice and age-dependent male traits with paternal germ-line mutation

Abstract

Several studies question the adaptive value of female preferences for older males. Theory and evidence show that older males carry more deleterious mutations in their sperm than younger males carry. These mutations are not visible to females choosing mates. Germ-line mutations could oppose preferences for "good genes." Choosy females run the risk that offspring of older males will be no more attractive or healthy than offspring of younger males. Germ-line mutations could pose a particular problem when females can only judge male trait size, rather than assessing age directly. I ask whether or not females will prefer extreme traits, despite reduced offspring survival due to age-dependent mutation. I use a quantitative genetic model to examine the evolution of female preferences, an age-dependent male trait, and overall health ("condition"). My dynamical equation includes mutation bias that depends on the generation time of the population. I focus on the case where females form preferences for older males because male trait size depends on male age. My findings agree with good genes theory. Females at equilibrium always select above-average males. The trait size preferred by females directly correlates with the direct costs of the preference. Direct costs can accentuate the equilibrium preference at a higher rate than mutational parameters. Females can always offset direct costs by mating with older, more ornamented males. Age-dependent mutation in condition maintains genetic variation in condition and thereby maintains the selective value of female preferences. Rather than eliminating female preferences, germ-line mutations provide an essential ingredient in sexual selection.Comment: 10 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions