research

Branching random walks and multi-type contact-processes on the percolation cluster of Zd{\mathbb{Z}}^{d}

Abstract

In this paper we prove that, under the assumption of quasi-transitivity, if a branching random walk on Zd{{\mathbb{Z}}^d} survives locally (at arbitrarily large times there are individuals alive at the origin), then so does the same process when restricted to the infinite percolation cluster C{{\mathcal{C}}_{\infty}} of a supercritical Bernoulli percolation. When no more than kk individuals per site are allowed, we obtain the kk-type contact process, which can be derived from the branching random walk by killing all particles that are born at a site where already kk individuals are present. We prove that local survival of the branching random walk on Zd{{\mathbb{Z}}^d} also implies that for kk sufficiently large the associated kk-type contact process survives on C{{\mathcal{C}}_{\infty}}. This implies that the strong critical parameters of the branching random walk on Zd{{\mathbb{Z}}^d} and on C{{\mathcal{C}}_{\infty}} coincide and that their common value is the limit of the sequence of strong critical parameters of the associated kk-type contact processes. These results are extended to a family of restrained branching random walks, that is, branching random walks where the success of the reproduction trials decreases with the size of the population in the target site.Comment: Published at http://dx.doi.org/10.1214/14-AAP1040 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Similar works