research

Initial validation of a virtual-reality learning environment for prostate biopsies: realism matters!

Abstract

: Introduction-objectives: A virtual-reality learning environment dedicated to prostate biopsies was designed to overcome the limitations of current classical teaching methods. The aim of this study was to validate reliability, face, content and construct of the simulator. Materials and methods: The simulator is composed of a) a laptop computer, b) a haptic device with a stylus that mimics the ultrasound probe, c) a clinical case database including three dimensional (3D) ultrasound volumes and patient data and d) a learning environment with a set of progressive exercises including a randomized 12-core biopsy procedure. Both visual (3D biopsy mapping) and numerical (score) feedback are given to the user. The simulator evaluation was conducted in an academic urology department on 7 experts and 14 novices who each performed a virtual biopsy procedure and completed a face and content validity questionnaire. Results: The overall realism of the biopsy procedure was rated at a median of 9/10 by non-experts (7.1-9.8). Experts rated the usefulness of the simulator for the initial training of urologists at 8.2/10 (7.9-8.3), but reported the range of motion and force feedback as significantly less realistic than novices (p=0.01 and 0.03 respectively). Pearson's r correlation coefficient between correctly placed biopsies on the right and left side of the prostate for each user was 0.79 (p<0.001). The 7 experts had a median score of 64% (59-73), and the 14 novices a median score of 52% (43-67), without reaching statistical significance (p=0,19). Conclusion: The newly designed virtual reality learning environment proved its versatility and its reliability, face and content were validated. Demonstrating the construct validity will require improvements to the realism and scoring system used

    Similar works

    Full text

    thumbnail-image

    Available Versions