research

Noncommutative solenoids and their projective modules

Abstract

Let p be prime. A noncommutative p-solenoid is the C*-algebra of Z[1/p] x Z[1/p] twisted by a multiplier of that group, where Z[1/p] is the additive subgroup of the field Q of rational numbers whose denominators are powers of p. In this paper, we survey our classification of these C*-algebras up to *-isomorphism in terms of the multipliers on Z[1/p], using techniques from noncommutative topology. Our work relies in part on writing these C*-algebras as direct limits of rotation algebras, i.e. twisted group C*-algebras of the group Z^2 thereby providing a mean for computing the K-theory of the noncommutative solenoids, as well as the range of the trace on the K_0 groups. We also establish a necessary and sufficient condition for the simplicity of the noncommutative solenoids. Then, using the computation of the trace on K_0, we discuss two different ways of constructing projective modules over the noncommutative solenoids.Comment: To appear in the AMS Contemporary Mathematics volume entitled Commutative and Noncommutative Harmonic Analysis and Applications edited by Azita Mayeli, Alex Iosevich, Palle E. T. Jorgensen and Gestur Olafsson. 19 Page

    Similar works

    Full text

    thumbnail-image

    Available Versions