research

A Bayesian framework for functional time series analysis

Abstract

The paper introduces a general framework for statistical analysis of functional time series from a Bayesian perspective. The proposed approach, based on an extension of the popular dynamic linear model to Banach-space valued observations and states, is very flexible but also easy to implement in many cases. For many kinds of data, such as continuous functions, we show how the general theory of stochastic processes provides a convenient tool to specify priors and transition probabilities of the model. Finally, we show how standard Markov chain Monte Carlo methods for posterior simulation can be employed under consistent discretizations of the data

    Similar works

    Full text

    thumbnail-image

    Available Versions