research

Probabilistic Infinite Secret Sharing

Abstract

The study of probabilistic secret sharing schemes using arbitrary probability spaces and possibly infinite number of participants lets us investigate abstract properties of such schemes. It highlights important properties, explains why certain definitions work better than others, connects this topic to other branches of mathematics, and might yield new design paradigms. A probabilistic secret sharing scheme is a joint probability distribution of the shares and the secret together with a collection of secret recovery functions for qualified subsets. The scheme is measurable if the recovery functions are measurable. Depending on how much information an unqualified subset might have, we define four scheme types: perfect, almost perfect, ramp, and almost ramp. Our main results characterize the access structures which can be realized by schemes of these types. We show that every access structure can be realized by a non-measurable perfect probabilistic scheme. The construction is based on a paradoxical pair of independent random variables which determine each other. For measurable schemes we have the following complete characterization. An access structure can be realized by a (measurable) perfect, or almost perfect scheme if and only if the access structure, as a subset of the Sierpi\'nski space {0,1}P\{0,1\}^P, is open, if and only if it can be realized by a span program. The access structure can be realized by a (measurable) ramp or almost ramp scheme if and only if the access structure is a GδG_\delta set (intersection of countably many open sets) in the Sierpi\'nski topology, if and only if it can be realized by a Hilbert-space program

    Similar works

    Full text

    thumbnail-image

    Available Versions