The study of probabilistic secret sharing schemes using arbitrary probability
spaces and possibly infinite number of participants lets us investigate
abstract properties of such schemes. It highlights important properties,
explains why certain definitions work better than others, connects this topic
to other branches of mathematics, and might yield new design paradigms.
A probabilistic secret sharing scheme is a joint probability distribution of
the shares and the secret together with a collection of secret recovery
functions for qualified subsets. The scheme is measurable if the recovery
functions are measurable. Depending on how much information an unqualified
subset might have, we define four scheme types: perfect, almost perfect, ramp,
and almost ramp. Our main results characterize the access structures which can
be realized by schemes of these types.
We show that every access structure can be realized by a non-measurable
perfect probabilistic scheme. The construction is based on a paradoxical pair
of independent random variables which determine each other.
For measurable schemes we have the following complete characterization. An
access structure can be realized by a (measurable) perfect, or almost perfect
scheme if and only if the access structure, as a subset of the Sierpi\'nski
space {0,1}P, is open, if and only if it can be realized by a span
program. The access structure can be realized by a (measurable) ramp or almost
ramp scheme if and only if the access structure is a Gδ set
(intersection of countably many open sets) in the Sierpi\'nski topology, if and
only if it can be realized by a Hilbert-space program