research

Mathieu subspaces of codimension less than n of Mat_n(K)

Abstract

We classify all Mathieu subspaces of Matn(K){\rm Mat}_n(K) of codimension less than nn, under the assumption that charK=0{\rm char\,} K = 0 or charKn{\rm char\,} K \ge n. More precisely, we show that any proper Mathieu subspace of Matn(K){\rm Mat}_n(K) of codimension less than nn is a subspace of {MMatn(K)trM=0}\{M \in {\rm Mat}_n(K) \mid {\rm tr\,} M = 0\} if charK=0{\rm char\,} K = 0 or charKn{\rm char\,} K \ge n. On the other hand, we show that every subspace of {MMatn(K)trM=0}\{M \in {\rm Mat}_n(K) \mid {\rm tr\,} M = 0\} of codimension less than nn in Matn(K){\rm Mat}_n(K) is a Mathieu subspace of Matn(K){\rm Mat}_n(K) if charK=0{\rm char\,} K = 0 or charKn+1{\rm char\,} K \ge n+1.Comment: 20 page

    Similar works