We prove that every reduced Stein space admits a holomorphic function without
critical points. Furthermore, any closed discrete subset of such a space is the
critical locus of a holomorphic function. We also show that for every complex
analytic stratification with nonsingular strata on a reduced Stein space there
exists a holomorphic function whose restriction to every stratum is
noncritical. These result also provide some information on critical loci of
holomorphic functions on desingularizations of Stein spaces. In particular,
every 1-convex manifold admits a holomorphic function that is noncritical
outside the exceptional variety.Comment: To appear in J. Eur. Math. Soc. (JEMS