Disease mapping is the field of spatial epidemiology interested in estimating
the spatial pattern in disease risk across n areal units. One aim is to
identify units exhibiting elevated disease risks, so that public health
interventions can be made. Bayesian hierarchical models with a spatially smooth
conditional autoregressive prior are used for this purpose, but they cannot
identify the spatial extent of high-risk clusters. Therefore we propose a two
stage solution to this problem, with the first stage being a spatially adjusted
hierarchical agglomerative clustering algorithm. This algorithm is applied to
data prior to the study period, and produces n potential cluster structures
for the disease data. The second stage fits a separate Poisson log-linear model
to the study data for each cluster structure, which allows for step-changes in
risk where two clusters meet. The most appropriate cluster structure is chosen
by model comparison techniques, specifically by minimising the Deviance
Information Criterion. The efficacy of the methodology is established by a
simulation study, and is illustrated by a study of respiratory disease risk in
Glasgow, Scotland