This paper investigates the asymptotic behavior of some common opinion
dynamic models in a continuum of agents. We show that as long as the
interactions among the agents are symmetric, the distribution of the agents'
opinion converges. We also investigate whether convergence occurs in a stronger
sense than merely in distribution, namely, whether the opinion of almost every
agent converges. We show that while this is not the case in general, it becomes
true under plausible assumptions on inter-agent interactions, namely that
agents with similar opinions exert a non-negligible pull on each other, or that
the interactions are entirely determined by their opinions via a smooth
function.Comment: 28 pages, 2 figures, 3 file