research

Decay towards the overall-healthy state in SIS epidemics on networks

Abstract

The decay rate of SIS epidemics on the complete graph KNK_{N} is computed analytically, based on a new, algebraic method to compute the second largest eigenvalue of a stochastic three-diagonal matrix up to arbitrary precision. The latter problem has been addressed around 1950, mainly via the theory of orthogonal polynomials and probability theory. The accurate determination of the second largest eigenvalue, also called the \emph{decay parameter}, has been an outstanding problem appearing in general birth-death processes and random walks. Application of our general framework to SIS epidemics shows that the maximum average lifetime of an SIS epidemics in any network with NN nodes is not larger (but tight for KNK_{N}) than E\left[ T\right] \sim\frac{1}{\delta}\frac{\frac{\tau}{\tau_{c}}\sqrt{2\pi}% }{\left( \frac{\tau}{\tau_{c}}-1\right) ^{2}}\frac{\exp\left( N\left\{ \log\frac{\tau}{\tau_{c}}+\frac{\tau_{c}}{\tau}-1\right\} \right) }{\sqrt {N}}=O\left( e^{N\ln\frac{\tau}{\tau_{c}}}\right) for large NN and for an effective infection rate Ο„=Ξ²Ξ΄\tau=\frac{\beta}{\delta} above the epidemic threshold Ο„c\tau_{c}. Our order estimate of E[T]E\left[ T\right] sharpens the order estimate E[T]=O(ebNa)E\left[ T\right] =O\left( e^{bN^{a}}\right) of Draief and Massouli\'{e} \cite{Draief_Massoulie}. Combining the lower bound results of Mountford \emph{et al.} \cite{Mountford2013} and our upper bound, we conclude that for almost all graphs, the average time to absorption for Ο„>Ο„c\tau>\tau_{c} is E[T]=O(ecGN)E\left[ T\right] =O\left( e^{c_{G}N}\right) , where cG>0c_{G}>0 depends on the topological structure of the graph GG and Ο„\tau

    Similar works

    Full text

    thumbnail-image

    Available Versions