In this manuscript a unified framework for conducting inference on complex
aggregated data in high dimensional settings is proposed. The data are assumed
to be a collection of multiple non-Gaussian realizations with underlying
undirected graphical structures. Utilizing the concept of median graphs in
summarizing the commonality across these graphical structures, a novel
semiparametric approach to modeling such complex aggregated data is provided
along with robust estimation of the median graph, which is assumed to be
sparse. The estimator is proved to be consistent in graph recovery and an upper
bound on the rate of convergence is given. Experiments on both synthetic and
real datasets are conducted to illustrate the empirical usefulness of the
proposed models and methods